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Abstract

Data on the web are numerous and their number is increasing everyday, novel
techniques are discovered everyday to use this data in productive manner. In spite
of privacy concerns in using personal data for suspicious surveillance, some data
are generated by people for public use. Such public generated data can be used for
providing public news, accident reports, recommendations, seasonal sales, crowd
behavior analysis, traffic updates, weather conditions, etc.

Availability of such data provides lot of scopes for various domains. Our work
focuses on using these data for recommendations in travel domain. Traditionally,
recommendations are delivered individually based on the ratings, likes (data ex-
plicitly given by users) or crowd presence, based on nearby locations, based on
past visits (implicit data deduced by users’ behaviors).

Context-aware recommendations use certain factors to deliver right recommen-
dations at right situations. A context often refers to a situation which is described
using some factors. The term context has a broad definition and is defined for dif-
ferent works in different ways. Context-awareness in travel recommendations can
be seen as time-aware, location-aware, social-aware recommendations provided
to the user. When a situation matches the predefined set of attributes (defined as
context), the corresponding recommendations can be delivered to the user. This
is useful for providing proactive recommendations - a new family of push mode
recommendations. Our idea behind this work is to use different types of feedback
such as crowd presence, ratings/likes about the Point-Of-Interests (POIs) for users
during travel and provide time aware and location aware recommendations.

We use the open data available on the web, discuss problems involved in gather-
ing right data and some existing techniques to generate such data in different ways.
We propose a tensor factorization model with unified feedback of both explicit (rat-
ings/likes etc.) and implicit (crowd presence, visit history) data from users about
the venues they have visited in the past. Recommendations are evaluated sepa-
rately, and together based on the feedback considered for the input.
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1
Introduction

1.1 Recommender Systems
Recommender Systems (RSs) are software tools and techniques which provide suggestions for
useful items to users [RV97, Bur07, MR09, RRS11]. The recommendations (or suggestions)
help a user to make decisions in buying items, listening to popular songs, visiting places, eating
different cuisines, buying different clothes etc. Recommender systems can be applied to any
domain which provides a list of choices for the user to choose from.

In general, recommender systems are supplementary software of a bigger system which
help users make decisions by providing choices. To learn about the user’s choice, these systems
use the feedback given by her and her profile information to recommend the items which she
might like. Recommendation of places differ from the recommendations for items such as
movies, shopping sites, music etc. Because shopping websites, new songs, new books are less
frequently used compared to places visited such as parks, restaurants, bars, or shopping malls
when a user is traveling.

1.2 Recommendations in Travel
The recommendations of good places in a city for a newly visiting user, cannot be inferred from
the past activities in his hometown. Especially when a user travels to a different country, the
cultural places, specialties, local places will not be identified if the user’s past data are the only
input for recommending new places. Hence these data about the new city have to be collected
from the users residing in that city or travelers who visited the city already, which can be a
better source of data for new users to the system. With this assumption, there is a vast amount
of data available and generated from the users in regard to places.

A simple recommendation example is shown in Figure 1.1 where a list of unranked items
and the user data are the input to the recommender system. The output of a recommender
system is a list of items, which is ranked and called recommendations.

Context-awareness is gaining attention in recommender systems since few years. Some
works also state the necessity of contextual variables or factors in the traditional recommenders
[AM06, Dey01]. Context-awareness tailors the recommendations to the right set of users at
the right situations, rather than a generic set of recommendations at all temporal intervals. For



Figure 1.1 – Simple recommendation example

instance, a traveler looking for POI recommendations at nigh time will get a list of recommen-
dations which might contain places closed at that time. Though the places recommended are
popular in that vicinity, ignoring the opening hours of the place will not result in a suitable
recommendation at that instance. This is an example for non context-aware recommendation.
Hence considering context such as time, in a recommender system might leverage its accuracy.

Context could be seen as a multifaceted concept that has been studied across different re-
search disciplines, including computer science (primarily in artificial intelligence and ubiq-
uitous computing), cognitive science, linguistics, philosophy, psychology, and organizational
sciences [AT11]. Since context has been studied in multiple disciplines, each discipline tends
to take its own idiosyncratic view that is somewhat different from other disciplines and is
more specific than the standard generic dictionary definition of context as conditions or cir-
cumstances which affect some thing [WWM75]. Since we focus on recommender systems and
the general definition of context is very broad, we restrict it to the domain of recommender sys-
tems such as time, place and the company of other people (e.g., for watching movies or dining
out).

We briefly discuss the term context and detail it in our work in the later chapters. Context
information plays a vital role in filtering recommendations or tailoring the right recommen-
dations for the right user. Contextual information such as time, location (GPS coordinates),
weather, crowd, weekday/weekend, special events contribute to the quality of recommendations
for travel. For example, recommending a park during a rainy day is not a good recommenda-
tion inspite of park being highly rated. Location Based Social Networks (LBSNs) are social
networks where people provide feedback about places either by checking in to a place, or by
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providing star ratings. Well known LBSNs are Foursquare1, Facebook2, Google Places3 where
users can rate the places they visit, know about, or add more places which are not available on
the networks.

1.3 Proactive Recommendations

A proactive recommender system pushes recommendations to the user when the current situ-
ation seems appropriate, withou any explicit user requests [WHBGV11]. For example: a user
walking around in the city centre at noon time, might either be looking for a restaurant or a bar
(see Figure 1.2). This situation corresponds to contextual situations in recommender systems.
This family of recommender systems is an upcoming topic in the field of wearable devices,
data mining and recommender systems.

Figure 1.2 – Proactive recommendation example

1https://foursquare.com
2https://www.facebook.com/help/461075590584469
3https://www.google.com/business/



Our work focuses on modeling a contextual recommender system which can take into ac-
count, the location, time and multiple feedback as input as provide recommendations at right
contextual situations needed for a proactive recommender. Figure 1.2 shows an example of
different aspects of a proactive recommender system. A user’s device metadata such as time
and location are considered in the example. The time in the Figure 1.2 represents an afternoon
timeperiod suitable for lunch recommendation. Hence the system ranks the list of places which
are open at that time and nearby to the user’s vicinity. Nearby places can be calculated using
Manhattan distance or any other measure for comparing GPS coordinates [Bla06].

A major difference between proactive and traditional recommender is that the proactive
recommenders works on push mode but traditional recommenders works on pull mode, i.e. a
user does not request for a recommendation in proactive systems, while in traditional systems
the user has to request for recommendations.

Push mode recommendations can be intrusive to users. Users do not like to get recommen-
dations at unsuitable times [DBSR15]. Hence it very important to understand when and where
the users should be delivered with recommendations. Context plays a vital role in this aspect of
proactive systems for identifying suitable situations for recommendations. Our goal is to model
the temporal and spatial information into the recommender model, so that it can be effectively
used to provide proactive recommendations.

Knowing the context of the user with the help of device metadata such as time and loca-
tion facilitates Proactive recommendations [WHBGV11]. Proactivity as defined in Wikipedia4

- Proactive behavior involves acting in advance of a future situation, rather than just reacting.
It means taking control and making things happen rather than just adjusting to a situation or
waiting for something to happen. In the case of recommendations, the continuous availability
of the device metadata will allow the inference of contextual situations [BCP14]. These con-
textual situations can be hard coded in the system to detect the user’s activities. As mentioned
before, metadata such as time, date, location can contribute in inferring the contextual situa-
tion required for recommendations. Hence on the recommender systems part, the design of the
system should take into account such contextual situations before providing recommendations.
This is when considering context for designing a recommender algorithm becomes important.

1.4 Profile Data vs Feedback Data
Useful data for recommendations can be classified into two categories:

• User profile data - name, gender, age, nationality, etc.

• Feedback data - preferences, ratings, likes, places visited, etc.

A problem occurs when a new user arrives into the system and does not have interacted
with the system yet, which results in absence of data about her. This is known as cold start
problem. Due to this, recommendations cannot be provided to the user until she interacts.
Either the user profile information is missing or the system fails to find suitable similar users
community for the new user. User profile data are used extensively used in cold starting content-
based recommender systems, because of the availability of profile information [NDB07]. Data
generated from user’s interaction with the system directly or indirectly are called as feedback

4https://en.wikipedia.org/wiki/Proactivity
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data. Such information portrays an interaction of a user with an item. Our focus is on the
feedback data and not the profile data.

Users perform checkin or tag a location with their post in social networks, which means that
they explicitly share their information of visits to a place to their friends on their network and
sometimes even publicly (depending on the their privacy settings). This checkin data consist of
the user id, profile link, timestamps, location and more details about the location such as place
name, type of place (restaurant, park, gamezone etc.), open hours, location (GPS), complete
address etc.

Feedback on LBSNs provided by the users are of two types: implicit feedback and explicit
feedback. Explicit feedback are the experience of the user with a POI given by herself. They
are in the form of likes (binary acceptance values), star ratings, reviews etc. Implicit feedback
are binary values which represents item purchases, movies watched, places visited (yes/no
values). We consider checkins as implicit data even though they are explicitly given by users
because this information does not provide any likeliness of the place to the user and this data
can be obtained implicitly through others means. Inference of activities from the raw GPS
data facilitates to know which places were visited by the user, using an external knowledge
source [FCRS13]. Through this approach the places visited by the user can be obtained at
a given timestamp. This type of feedback are implicitly obtained from the user data hence
they are abundant compared to explicit feedback. On the contrary, these do not provide any
information about the satisfaction of the user with the item or POI.

The main objective of our work is to consider both implicit feedback and explicit feedback
from the users about the POIs and represent it in a suitable way and use this information for
providing contextual recommendations which are suitable for that context, which is time and
location aware.

The intuition behind using location and time as context for recommendations is that the
proactive recommender systems are one of the upcoming class of systems which work also on
the basis of these factors. To support such system, the context has to be analyzed and mod-
eled suitably. Building a new algorithm for a new system or a new domain is not productive,
instead one can focus on modeling the data in suitable manner for the existing state-of-the-art
algorithms.

Definitions which we use in the rest of this document are as followed:

• Recommender model/system: system which processes the input data along with exter-
nal knowledge source to output recommended items

• Recommendations: ranked list of items.

• Context: location (distance, nearby places) and time (timestamps, timeframes, date).

• Tensor: N dimensional matrix like structure (3 Dimensional tensor specifically)

1.5 Problem Statement
As mentioned earlier, several approaches are used to provide recommendations of places for
users based on the data collected from the user and other similar users.

Explicit data can be used to determine what the user likes based on ratings, likes provided
by the user. Implicit feedback can be used to determine various aspects such as crowd density,



places visited, user’s presence in different areas at different time slices etc. Although this
information cannot depict the user’s likeliness to visit a place, or attributes of the place that he
liked,it depicts some of the features which are useful for recommendations. Implicit feedback
can be used to provide recommendations based on other user’s presence in the targeted POIs as
discussed in [YSQ+15].

Existing systems use explicit and implicit feedback individually to provide recommenda-
tions.
The problems encountered when implicit feedback is individually considered:

• Less crowded places (crowd presence calculated using checkins) are not recommended
to the user.

• Places where a user U’s friends have never visited before [YSQ+15], are not recom-
mended to the user U (on an assumption that user prefers the places where his friends
have been before).

The problems encountered when explicit feedback are individually considered:

• Low rated places (aggregated ratings of a place signifying bad reviews) are not recom-
mended.

• Places without ratings, are not recommended.

1.6 Structure of the report
This document is structured as following: Chapter 2 discusses about work related to our study,
then while Chapter 3 details our approach to the problem described above, Chapter 4 shows
the experiments we have done to assess our approach. Eventually, Chapter 5 concludes and
sketches some further work.
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2
Related Work

In general, recommender systems are tools and techniques which provide users with sugges-
tions for items a user may wish to utilize [RRS11]. These items can be songs, shoes, shirts,
movies, places to visit (POIs), events, computers, mobile phones etc. These suggestions, facil-
itates the service providers to boost their sales by targeting the right crowd with the right set
of products. There are various reasons for service providers to use a recommender system for
their services. Some of them are: increase the number of items sold, sell more diverse items,
increase user satisfaction, increase user fidelity, better understand what user wants [RRS11].

Recommender systems are used in various domains, and some of the major service providers
include Netflix (movie/tv show streaming service provider), Amazon (shopping website), Spo-
tify (music streaming service provider), Quora (question-and-answer website where questions
are asked, answered), Swarm (an application based on Foursquare services), and so on. We
discuss below some of the notations, techniques, approaches used in recommender systems:

Users

Users are the stakeholders who are involved in providing feedback and receiving recommen-
dations, their profile contain additional information about a user, consisting of attributes like
gender, age, address, nationality, choices, preferences etc. Some of these attributes are explic-
itly provided by the user and some are implicitly assumed, some of the implicit assumptions are
the location of the user based on her IP address, her clicks on certain items, products purchased
in the past etc.

Items

Items are the products which are provided by the service providers to the user. They are domain
dependent. Sometimes these items can also be other persons, groups based on the purpose of
recommendations. In our work, we use POIs as items.

Feedback

Feedback are the results of Interaction of user with the system. We discuss in detail about
the feedback in section 3.1. Generally, feedback are ratings provided by the users for items,
which are numerical values in ranges. For example, 0-5 stars for a movie, binary rating for
liking/unliking a product etc.



2.1 Types of Recommender Systems
Recommender systems generally are classified into three types.

• Content-based recommenders.

• Collaborative filtering based recommenders.

• Hybrid recommenders.

Content based Recommenders

Content-based recommenders work on the basis of a simple assumption that, if a user likes
something in the past, he might like similar items in the future. Similarity scores are calculated
with items rated by the user and items which are not rated by the user.

Content-based recommenders are used for personalizing recommendations for users. When
a new user enters the system, she would not have interacted with the system hence the data
required to provide recommendations will be lacking, this is a drawback of content based sys-
tems.

Diversity problem is another problem where a user always rates similar kind of items (same
genre movies) which results in recommendations of only that category of items.

Collaborative filtering Recommenders

Collaborative filtering techniques are used to provide recommendations based on similarities
between the user U and other users or similarities between the items. Similarities can be be-
tween the items which user U and other users interacted with, or the similarities can be between
the users.

One of the major problems which collaborative filtering systems suffers from, is the cold-
start problem because the system would not understand the similar users unless the user has
performed some interactions [NDB07].

Hybrid Recommenders

Hybrid recommenders are a special type of recommenders which are often used in commercial
scenarios to avoid the cold start problem, diversity problem [BCR14].

Recommendations are domain dependent and defining context is dependent on the recom-
mendation environment [Dey01, AM06]. As the variety of items in different domains differ,
the word context also changes its meaning as we discussed earlier.

In collaborative filtering approaches two primary methods are:

1. Neighborhood methods are centered on computing the relationships between items or
between users. The item oriented approach evaluates a user’s preference for an item
based on ratings of neighboring items by the same user. A product’s neighbors are other
products that tend to get similar ratings when rated by the same user [KBV09].

2. Latent factor models are an alternative approach that tries to predict the ratings by char-
acterizing both items and users with some number of inferred factors from the rating
patterns, say 20 to 100 factors. In a sense, such factors comprise a computerized alter-
native to the human made factors or the profile details as used in content based systems.
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For instance, a user can be described by the user profile attributes such as gender, age etc.
which are human made and observable factors, whereas relationships between items and
users cannot be specified, as they vary according to the data and are numerical patterns,
hence they are inferred from the data values.

2.2 Context in Travel Recommendations
The contextual factors or situational factors which help in describing a situation, will be focused
on aspects which a traveler would be interested in. We use only location and time as the two
contextual variables to consider nearby places and timely recommendations, similar to works
discussed in [RRS11, YSQ+15].

For instance, a user who is looking for a restaurant nearby her vicinity would like to know
the restaurants nearby to her and which are open. Providing the best restaurant recommendation
to her which is 200 miles far from him will not be suitable. Hence location and temporal factors
contribute for suitable recommendations [KGF16, FKCC+15].

2.3 Matrix and Tensor models
Some of the successful and widely used latent factor models for recommendations include ma-
trix factorization approach. Matrix factorization characterizes both items and users by vectors
of factors inferred from item rating patterns [KBV09].

Recommender systems represent the data in the form of matrices with one dimension as
the user and the other as the item, the values are the rating provided by the user. Matrix
factorization approaches such as non-negative matrix factorization [LS01], probabilistic matrix
factorization [SM11], bayesian probabilistic matrix factorization [SM08] are widely used in
the field of machine learning, data mining, recommendations etc.

Matrix Factorization

Basic matrix factorization model as shown in the Figure 2.1:

Figure 2.1 – Matrix R factorized into U and V .

A matrix R consists of ratings provided by users U on the items V . Items are considered
as V because items in travel domain are venues (or POIs). The goal of matrix factorization



is to find two matrices U (a |U | ×K matrix) and V (a |V | ×K matrix) such that their product
approximates R, and K represents the rank of the decomposed matrices.

R≈UT ×V = R̂ (2.1)

In this way, each row of U would represent the strength of the associations between a user
and the features. Similarly, each row of V would represent the strength of the associations
between an item and the features. To get the prediction of a rating of an item v j by ui, we can
calculate the dot product of the two vectors corresponding to ui and v j:

r̂i j = uT
i v j =

k

∑
k=1

uikvk j (2.2)

Once the ratings are estimated, it is necessary to calculate the difference between their
product to the real values in R, and then try to minimize this difference iteratively. Such a
method is called gradient descent, which tries to optimize the local minima.

Squared error is the error between estimated ratings and actual ratings, raised to the power
of 2, is calculated by the following equation:

e2
i j = (ri j−

K

∑
k=1

uikvk j)
2 +

α

2

K

∑
k=1

(||U ||2 + ||V ||2) (2.3)

The parameter α is used to control the magnitudes of the user-feature and item-feature
vectors such that P and Q would give a good approximation of R.

Matrix factorization models are widely used in recommender systems to factorize large ma-
trices into smaller matrices and find similar users or similar items based on certain requirements
of the domain.

Tensor Factorization

Tensors could be seen as a vector in an n-dimensional space1. The main idea behind the
use of tensors is that we can take advantage of the same principles behind matrix factoriza-
tion to deal with N-dimensional information [KABO10]. Traditional recommendation systems
use matrix representations to store data and perform computations on it. Those approaches
using matrices are successfully used in many domains and applications. Matrix Factoriza-
tion is one of the most used approaches for collaborative filtering but the model is not flexi-
ble enough to add contextual dimensions in a straightforward manner as the matrix can only
hold 2 dimensional information [KABO10]. Tensors can hold more variables in different axis
which allows to perform easier computational mechanism when more contextual variables are
introduced. Several works are reported on using tensors for recommendations (see for in-
stance [XCH+10, KABO10, YZZY15, YSQ+15]).

The definition for basic tensor factorization model for POI recommendations using location
and time as follows [YSQ+15]:

Tensor R represented in the figure 2.2 is constructed using m users {ui}m
i=1 on n venues

{v j}n
j=1 at q timestamps {tk}q

k=1. The tensor R ∈ Rm×n×q is a third order tensor, where each
Ri, j,k contains the feedback values.

1https://en.wikipedia.org/wiki/Tensor
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The tensor R can be estimated from the sparse values using CP decomposition D compo-
nent of rank 1 tensors [KB09]. The preference of a user or the number of visits of user ui on
location l j in time frame tk can be approximated as: R ≈ ∑

D
d=1 ud ◦vd ◦ td where R̂ denotes the

predicted approximation of R; ud ∈ Rm, vd ∈ Rn, td ∈ Rq. The aim is to find the decomposi-
tion of R̂ that best approximates the original tensorR to achieve better results (see Figure 3.2).
Optimization problem by minimizing the square loss is as follows:

L(U,V,T ) =
1
2

min
U,V,T

‖R− R̂ ‖2
F (2.4)

=
1
2

min
U,V,T

‖ R−
D

∑
d

ud ◦ vd ◦ td ‖2
F (2.5)

Where U = [u1, ....,uD]∈Rm×D, V = [v1, ....,vD]∈Rn×D, and T = [t1, ...., tD]∈Rq×D are factor
matrices.

To avoid overfitting, the regularization terms associated with U ,V ,and T are introduced into
equation 2.5 as:

min
U,V,T

1
2
‖ R− R̂ ‖2

F +
λ

2
(‖U ‖2

F + ‖V ‖2
F + ‖ T ‖2

F) (2.6)

Figure 2.2 – Tensor representation (figure taken from [YSQ+15])



Several approaches use tensors for computing missing values or hidden relationships within
the data. But there are certain problems such increased sparsity value compared to matrix
approaches because of the increase in dimensional. The work reported in [KCL15] shows
the tensor factorization via matrix factorization. Authors state that the numerical methods for
tensor factorization have not reached the level of maturity of matrix factorization methods.
Hence they propose a new algorithm for CP tensor decomposition that uses random projections
to reduce the problem to simultaneous matrix diagonalization.

Feedback data in recommendations

Data in a matrix or a tensor are numerical values which can be of range (0 - 5 or 1 - 10) in the
case of ratings or binary (Y/N) in the case of implicit feedback. Implicit feedback might also
be a counter value which increases the count, everytime a user performs an interaction. The
idea of complementing explicit with implicit feedback was first proposed in [BK07b], where
the explicit feedback were the ratings for the movies and implicit feedback were the movies
which were rated by the users. A factorized neighborhood model was used to combine both the
forms of feedback, which is an extension of traditional nearest item-based model.

Another method which unifies the explicit and implicit feedback for collaborative filtering
was discussed in [LXZY10], where authors normalize both forms of feedback into one scale of
values and propose a co-rating model as shown in equation 2.7:

argmin
U,V

LE(U,V )+η .LI(U,V )+λ .R(U,V ) (2.7)

In Equation 2.7, square losses due to explicit and implicit feedbacks are added together and
an additional parameter η is introduced to weight the relative importance of two feedbacks.

The above mentioned work has been focused on collaborative filtering approaches. The
work discussed in [LC16] is one of the first approaches to consider the use of both type of
feedbacks into recommender model for personalized ranking. Authors developed a new ranking
algorithm (MERR SVD++) based on the xCLiMF [SKB+13] and SVD++ [Kor08] which
exploits both the explicit and implicit feedback simultaneously and optimize the well known
evaluation metric, so called Expected Reciprocal Rank (ERR). These approaches use a matrix
to represent data which uses a 2 dimensional representation.

Datasets

Most of the research works use datasets released by the following content providers which are
anonymous and free for research use: Netflix2 for the Netflix challenge3, Kaggle4, Stanford
Large Network Dataset Collection5, UC Irvine Machine Learning repository6 etc. The Netflix
Prize was an open competition for the best collaborative filtering algorithm to predict user
ratings for films, based on previous ratings without any other information about the users or

2https://www.netflix.com
3https://en.wikipedia.org/wiki/Netflix Prize
4https://www.kaggle.com/datasets
5https://snap.stanford.edu/index.html
6http://archive.ics.uci.edu/ml/index.html
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films, i.e. without the users or the films being identified except by numbers assigned for the
contest. Netflix provided a training data set of 100,480,507 ratings that 480,189 users gave to
17,770 movies. Each training rating is a quadruplet of the form (user, movie, date of grade,
grade): Information borrowed from Wikipedia article7.

2.4 Synthesis

2.4.1 Context-awareness
Context has been studied extensively in various disciplines such as smart homes, smart cities,
information retrieval, ubiquitous computing etc. Importance of using context in recommender
systems has been discussed a lot of times, we consider context to be an important factor in the
recommender model.

In travel recommendations, context can be several things such as time, location, weather,
friends (social), weekday/weekend, seasons etc. As we are limited to certain available datasets,
we consider Time and Location to be our contextual factors.

2.4.2 Tensor Model
As there is a clear advantage of using tensors over matrices inorder to consider higher dimen-
sional data, we decided to use tensors to represent the data (feedback). Specifically we use a 3
way tensor with User, Time and Location representing each axis. And the tensor data can be
explicit, implicit or combined feedback which we discuss in detail in Section 3.1.

7https://en.wikipedia.org/wiki/Netflix Prize





3
The ExIm Model

3.1 Proposed Approach
Our objective is to model data useful for proactive recommender systems, hence we propose to
use the feedback data, consider location and time variables into a tensor representation for feed-
back values. The goal is to leverage the existing state-of-the-art techniques and algorithms for
providing recommendations, while representing heterogeneous feedback data in existing rec-
ommender models. Working of the proposed recommender system is briefly explained below
and represented by the Figure 3.1.

A recommender system has three main components:

1. Input data - explicit, implicit, external

2. Recommender model - similarities and scoring methods

3. Recommended items (Output) - ranked list of items

Input data can be further divided into three categories as listed above: 1) explicit data being
the ratings provided by the users, 2) implicit data being the checkin data of the users in a POI,
3) external data being the data about the POIs which are namely the name of the place, type,
address, location (coordinates), specialties, timings.

Detailed discussion about the data collection and various types of issues are discussed be-
low.

3.2 Similarity between Users and Items
Delivery of recommendations for a user depends on what similar users have liked or visited
in the past. Hence calculation of similar users is necessary to deliver recommendations. We
can use Jaccard similarity coefficient as a measure to calculate to similar POIs based on their
feedback values.

The Jaccard coefficient measures similarity between finite sample sets, and is defined as the
size of the intersection divided by the size of the union of the sample sets1. Jaccard similarity is

1https://en.wikipedia.org/wiki/Jaccard index



Figure 3.1 – POI recommender with dual feedback as input.

used to measure the similarity between two set of elements. In the context of recommendation,
the Jaccard similarity is used to compute similarity between two items as shown in equation
3.1.

J(a,b) =
|Ua∩Ub|
|Ua∪Ub|

=
|Ua∩Ub|

|Ua|+ |Ub|− |Ua∩Ub|
(3.1)

where Ua is the set of users who rated item a and Ub is the set of users who rated item b.
Jaccard similarity coefficient gives the measure of similarity between these two sets of users.
Jaccard is a good choice when one only has implicit feedbacks of items (e.g., people rated them
or not). Based on similar unseen items for a user U , new recommendations can be delivered.

3.3 Data Modeling
The data consist of users U who have performed checkins at venues V and timestamps T .

Traditional recommender systems use matrix representation of data which can model the
user and item relationship, using ratings/likes or implicit data such as purchases histories. In
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order to consider more variables or more features in this user and item relationship, a higher
dimensional approach is required.

For instance, considering time as an extra variable for a retail store sale recommendation
can utilize temporal entities in the purchase history to provide time-aware recommendations,
where time is represented using seasons [XCH+10].

For travel and tourism purpose considering time/temporal entities into the recommender
model facilitates time-awareness for the recommendations. Some works use a tensor represen-
tation for this purpose [XCH+10, KABO10, BLR11] . In order to model the context into the
recommender model, we use a tensor representation of the data.

Figure 3.2 represents the Tensor representation of the data where users U , venues or POIs
V and timestamps T are modeled as 3 axis of a three dimensional tensor. The values of the
tensor are of three different types. Frequency of user visits, ratings from the places and both
combined by normalization.

Figure 3.2 – Tensor representation of the data.

3.3.1 Explicit feedback

3.3.2 Dataset
Explicit data is the data explicitly given by the user, such as ratings, likes etc. As shown in
Figures 3.3 and 3.4, explicit data is data available on the web which determines how well
a place or an object was liked by the users. This data is often trustworthy for other users.
Although type of data can be easily accessible on the web, the quantity of this data is very less.
This issue is called sparsity problem in recommender systems. The users interacting with the
system will not rate all the items in their vicinity, and also not all the items will be seen the

Figure 3.3 – Ratings on Foursquare. Figure 3.4 – Ratings on Yelp.



user, which gives rise to missing data, which is a problem for algorithms built on assumption
that the data is complete. In travel domain, users do not rate all the POIs which visited by them,
which makes the dataset sparse. The work reported in [MZ09] shows how the users rate while
asked to rate items in random.

Figure 3.5 – (Left) Limited list of item ratings; (Right) Free list of item ratings.

Figure 3.5 represents the results of two cases of user responses. Users when provided with a
limited random set of items and asked to rate, provided low ratings for some items (Fig.3.5
Left). But when users were provided with a free list of items and asked to rate random items
which they chose to rate, the ratings obtained were better in quality (Diverse ratings) (Fig.3.5
Right) [MZ09].

This study reflects that the users tend to rate better when they are not forced to rate, but
given a freedom of choice to rate the items, the rating quality gets better. This makes it harder
to obtain such quality feedback in realtime.

3.3.3 Implicit feedback
Implicit data is indirectly obtained from a user’s interaction with a system. Such as mouseclicks,
purchases history, visited webpages, visited POIs, etc. Implicit data for travel/tourism is the lo-
cation of the user and the timestamp. Implicit data is generally available in abundance when
compared to the explicit data as the explicit data is often very sparse [BK07a]. Implicit data can
be obtained in many ways, in our work we consider the checkin from Foursquare [YZZY15] as
implicit data because this data even though its explicitly given by the user, it still does not ex-
press the likeliness or directly depict the reviews of the visit. Also, many other social networks
such as Facebook2 and Twitter3 allow tagging of location with the status and tweets respec-
tively which represents a user’s presence at that instance. Hence we consider it as Implicit
data.

2https://www.facebook.com
3https://www.twitter.com
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The use of LBSN (Location Based Social Networks) might be fading away in the recent
years as people are getting used to new networks and new types of data is being generated.
There was a study about ”Context Collapse” in Facebook, where people’s information or ex-
pectations from one context invade or encroach upon another4. Users share lots of content on
their Facebook profiles and tweet a lot about things happening around the world on Twitter but
people are sharing less about themselves such as sharing about their whereabouts, their trips,
their status, their checkins etc. Hence obtaining this sort of implicit data using networks such
as Foursquare, Facebook might become obsolete in the upcoming years as there are privacy
concerns about this and users feel less secure.

We acknowledge that the privacy of the user is ignored in our work, the security of the
data is out of scope for this work but we feel that there are needs for secure infrastructures,
maintaining anonymity, keeping users in the loop when procuring such data.

Figure 3.6 – Stay point calculation in a GPS track

There are several uses from the implicit data of the user. We studied several alternatives
for obtaining this type of data apart from the Foursquare dataset which we use. One of the
approaches was analysing GPS Tracks or GPS trajectories of a user in a given time frame and
extracting the places he visited, as discussed in [FCRS13]. The authors of this work extracted
the places from GPS tracks using stay points. A stay point as shown in figure 3.6 is a point in
the GPS track where a user has stopped for more than a threshold value of time. This threshold
value can range from 20-40 mins for the POI in travel. Knowing the stay points, the visited
locations can be determined using Google Maps5 data or Foursquare API data to determine the
places around that stop point and assume the closest one as the place visited by the user. In this
work [FCRS13], authors try to infer the activities carried out by the user, by knowing the place
visited by the user, by the method mentioned above.

The work discussed in [ZX10] takes into account a user’s travel experience and the sequen-
tiality that locations have been visited, then they learn the location correlation from a large
number of user-generated GPS trajectories.Using this location correlation, a personalized loca-
tion recommendation system was built and evaluated on a real-world GPS dataset collected by
112 users over a period of 1.5 years.

4https://www.theguardian.com/technology/2016/apr/19/facebook-users-sharing-less-personal-data-
zuckerberg

5https://www.google.com/maps



3.3.4 Contextual Factors
Contextual factors such as time and location helps in providing relevant recommendations to
a user who is travelling. Though we are not building a recommendation system in this work,
the recommender model which is built on considering the context as input helps to build a
recommendation system easily.

Building a proactive recommendation system needs a context aware recommender model
which is able to handle the contextual situations, which a proactive recommendation system
would work on. Hence understanding the context is the task of the recommendation system.
But building the recommender model in order to consider such contextual factors is the chal-
lenge which our is focussing on.

Explicit feedbacks which are represented in a range of numbers and implicit feedbacks
which are binary values in our case are to be unified into one value before proceeding further.
The reason why this has to be done is because most of the well known algorithms for rec-
ommendations rely on one sort of feedback. For instance [BLR11, XCH+10] use ratings as
the primary data to provide recommendations. But many implicit data are ignored while these
methods are utilized.

Users not only depend on rating scores to decide on their choice, there are other contextual
factors which might influence user’s choice.

Hence there is a need to adapt the heterogeneous data into existing algorithms to utilize the
potential of the state of the art system to the maximum.

Section 3.4 represents the possibilities of the feedback data considered individually and
combined together, using fuzzy logic.

Cases such as:

• Low rated place but highly crowded.

• High rated place but low crowded.

can be of interest during special events or specific timeline of a year. This data plays vital role
when temporal events are considered into recommender models.

Figure 3.7 – Popular timings for a place shown in Google.
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Combining or unifying both the feedback facilitates to provide context aware recommen-
dations with respect to both the likeliness of the places as well as contextual factors. Two cases
where combination of feedback facilitates recommendations: 1) low rated but crowded places.
2) less crowded but highly rated places.

3.4 ExIm Tensor model
ExIm stands for Explicit and Implicit data. We consider explicit feedback as xui and implicit
feedback as yui. There are two complications in considering both the feedback together.

• xui are ratings, which are often in a range of 1-10 or 0-5, where as yui are the user’s
presence in a venue, which is either -1 or +1 or binary values.

• The range of xui and yui are highly variant with each other hence they cannot be unified
or combined directly.

To address these problems, [LXZY10] normalize the original values xui and yui to a common
scale ranging from 0 to 1 and assign different importance to explicit and implicit feedback using
η as a parameter. Normalizing both the feedback to binary values leads to loss of valuable
information obtained by the ratings. Normalizing the values remains suitable for binary cases
of explicit data (ratings) such as Like and Unlike values but not when the values are ternary or
n-ary or in a range. To model the data of crowd presence and ratings together, there is need
for common representation and binary representation will not hold good because of the loss of
information.

Hence we propose a model based on Fuzzy logic [Tan97, Men95] for combining both feed-
back sets. We list the steps of fuzzy logic process for our work and describe each in detail:

1. Define the linguistic variables and terms.

2. Construct the membership functions.

3. Construct the fuzzy matrix based on predefined rules.

4. Use it for filling tensor values.

Linguistic variables are the input or output variables of the system whose values are words
or sentences from a natural language, instead of numerical values. We define two sets of input
linguistic variables for explicit and implicit data.

Implicit data in travel domain are the crowd presence calculated using the checkin data.
Checkin data is raw data which has to be processed to understand the crowd presence. Hence
we aggregate the checkin data over a timeperiod and compare the maximum and minimum
count of checkins as shown in Figure 3.7, at a time interval such as weekday or weekend, and
represent this raw checkin data in terms of three meaningful variable as shown in equation 3.2
by substituting minimum value to empty, maximum value to crowded and average values to
moderate.

T (Im) = {empty, moderate, crowded} (3.2)



Explicit data is often in the range of 1 - 10 or 0 - 5, to have a generic representation of these
values, we consider 5 values to represent the explicit feedback data. If the range of ratings
contains 10 values, it can be reduced to 5 values for this representation to be suitable for the
data.

T (Ex) = {worst, bad, average, good, very good} (3.3)

Membership functions for T (Ex) and T (Im) are plotted in figures 3.8 and 3.9 respectively.
We have considered the scale of ratings to be 0 - 5 and scale of crowd presence from 0 - 3.
As mentioned earlier, the scale of crowd presence is calculated by processing the raw data into
three meaningful variables for fuzzy logic.

Figure 3.8 – Membership function for Varible T (Ex)

Figure 3.9 – Membership function for Varible T (Im)
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Figure 3.10 – Data of the tensor T .

Implicit/Explicit Worse Bad Average Good Very Good
Empty 3 3 2 1 1

Moderate 3 3 2 1 1

Crowded 3 3 2 1 1

Table 3.1 – Fuzzy matrix for representing processed implicit and explicit data.

The tensor contains the data based on the values in fuzzy matrix shown in 3.1 and graphical
representation of possible tensor values for different explicit and implicit data are shown in the
figure 3.10. A subset of fuzzy rules which were used in generating the fuzzy matrix are shown
below:

• If (Explicit is Very Good) and (Implicit is Crowded) then (Tensor Data is 1)

• If (Explicit is Average) and (Implicit is Moderate) then (Tensor Data is 2)

• If (Explicit is Bad) and (Implicit is Empty) then (Tensor Data is 3)

Complete table with the all the fuzzy rules is given in the Appendix.



Figure 3.11 – Tensor decomposition.

Tensor R represented in the figure 3.11 is constructed using m users {ui}m
i=1 on n venues/location

{v j}n
j=1 at q timeframes {tk}q

k=1. The tensor R ∈ Rm×n×q is a third order tensor, where each
Ri, j,k contains the feedback values generated by fuzzy logic.
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4
Experiments

The objective of a good recommender system is to have maximum acceptance rate for the rec-
ommendations delivered. Hence it is important to evaluate our proposed ExIm tensor model by
recommending some POIs and comparing them based on some performance metrics.

Evaluations in recommender systems are carried out for two different purposes:

1. Rating prediction.

2. Item recommendation accuracy.

Our work is based on POI recommendations to traveling users, it belongs to the class of
item recommendations.

Item recommendations are ranked list of items delivered to users, and is detailed in Section
3.1. This ranked list of items can be evaluated in real time by asking the users to interact with
the system and by observing their feedback. But in an offline scenario, we lack the real user
interactions with the system. It is expensive in terms of time and money to conduct evaluations
with real time users.

There are three kinds of evaluations:

1. Offline evaluation: offline evaluations are suitable and cheaper solutions because real
users are not asked to evaluate the system. POI recommendations can be evaluated offline
by comparing the output ranked list of POIs with the actual POIs visited by the user, an
error value is incremented if the place visited, is not on top 1 position of the ranked list.
If the place visited is on top 1 position, then the error value is not incremented. Mean
error value is calculated on the entire dataset to obtain the performance score. Only top 1
can be evaluated in an offline case for POIs , as we cannot determine the user’s response
in acceptance of any other ranked item in the list, as we only know one place visited
by the user at that instance [YSQ+15]. Hence this is one of the limitations of offline
evaluations.

2. Online evaluation: A recommender algorithm is built and deployed on a real-time system
such as an e-commerce site, movie streaming site, etc. and based on user behavior, in-
volvement, increase in sales, increase in site traffic, the performance of the recommender
algorithm (system) is measured. This is the most expensive approach, as bad algorithms
might cause loss for the service provider.



3. User studies: A system or a prototype is built and users are asked to use the system by
informing the users about the evaluation being carried out. This is comparatively cheaper
to online approach but this does not always guarantee the best results as the users being
evaluated might be biased in some aspects. Hence proper care has to be taken to involve
diverse and unbiased class of users.

In our work, the suitable evaluation is offline evaluation because of the ease in conducting
it in short timeperiod.

4.1 Experiment settings
In offline evaluations, a dataset of places visited can be evaluated by splitting it into two parts
namely train and test datasets. It is called as A/B testing. A dataset is split into two parts A
and B, A represents training part and B represents testing part. This splitting can be done in
random, but an important consideration is that the complete set of users should be present in
both the train and testing data, but the items interacted by the users can be split. In our work,
we take into account all the users into the training and testing data, but POIs visited by the user
(which represents items) are split into two parts. Depending on the experiment settings, this
can be split in different percentages. i.e. 50% train and 50% test or 70% train and 30% test,
etc.

To do an offline evaluation on our dataset, we had to split Foursquare dataset, which is
explained in Section 4.2.

Calculation the precision and recall values on our data using Equation 4.1 and 4.2:
Four possible outcomes for the recommended items and test data items, as shown in table 4.1
[SG11].

- Recommended Not Recommended
Visited True Positive (tp) False Negative (fn)

Not visited False Positive (fp) True Negative (tn)

Precision =
# t p

# t p+# f p
(4.1)

Recall =
# t p

# t p+# f n
(4.2)

# represents the number of elements.

Other evaluation measures for error rate calculation of rating predictions are:

• Root Mean Square Error (RMSE)

• Mean Absolute Error (MAE)

• Non Discounted Cumulative Gain (NDCG) etc.
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For item recommendations, evaluation measures which are used in Information Retrieval
(IR) are used. Precision and Recall values are suitable for evaluating Top N items. N represents
the number of elements in the ranked list to be considered for performing evaluation. Top N
values are computed for different number of N to compare Precision N and Recall N.

4.2 Datasets
Data required for our ExIm model has to contain explicit and implicit data of the same set of
users, so the evaluation would be consistent.

To evaluate our approach, we assessed several freely available datasets for research purpose.
Table 4.2 tabulates the different datasets and their relevance to our work of explicit and implicit
data for recommendations.

Datasets Explicit Implicit Remarks
Foursquare 7 X Checkins + aggregated ratings

Yelp X 7 Ratings + aggregated checkins

Brightkite 7 X Checkins only

Gowalla 7 X Checkins only

Table 4.2 represents the availability of data from different service providers. It is evident
from the table that we could not obtain a dataset which has both explicit and implicit data from
the same set of users. Yelp and Foursquare although, provide both explicit and implicit data,
they are not from the same set of users. Because Yelp provides checkin data aggregated over
numerous checkins of users and Foursquare provides rating data aggregated over numerous
ratings and other factors which Foursquare does not disclose. Brightkite and Gowalla datasets
belong to LBSNs and have checkin data but does not provide any ratings related to the venues.
Hence we could not use them for evaluations.

A brief overview about the dataset we obtained from [YZZY15]:

The Foursquare dataset contains checkins in New York city collected for about 10 months
(from 12 April 2012 to 16 February 2013). It contains 227,428 checkins in New York city.
Each checkin is associated with its timestamp, its GPS coordinates and its venue categories
on the Foursquare platform. This dataset was originally used for studying the spatial-temporal
regularity of user activity in LBSNs.

We had to filter the Foursquare dataset with checkins of users who had less than 5 checkins
because the evaluation would not be better with less train and train data. We removed places
such as schools, workspaces, funeral homes, homes, recycling facilities, car washes, general
stores, cemetery, laundries, airports, trains stations etc. as they are not suitable for recommen-
dations.

The dataset collected, refined and later used for experiments contained users, venues and
time as shown in the following figures 4.1, 4.2



Figure 4.1 – Distribution of Timeperiods vs Venues.

Figure 4.2 – Ratings of users on a scale of 0 - 10

Figure 4.1 represents the checkin counts in three different timeframes of the day, ’1’ for
’Morning’, ’2’ for ’Afternoon’, and ’3’ for ’evening’. Figure 4.2 plots the rating scale of 0 -
10 and the ratings of the users. The median value of the ratings is 7 according to the graph.
Foursquare dataset does not provide ratings directly from the work of [YZZY15]. We used the
Foursquare Developer API to obtain the ratings using the ”venue id” from the dataset. We were
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successful in obtaining only the aggregated ratings for a subset of venues in our data and not
all the venues, as ratings are not available for all the venues on Foursquare.

Using this dataset of Foursquare, we modeled the Tensor pazocalR based on ExIm model
by using Fuzzy rules and matrix to fill the tensor with values from Fuzzy matrix. In real time
evaluation, instead of filling values of fuzzy matrix into the tensor. We can directly multiply the
fuzzy matrix values with the frequency of user visits to the place and store it in the tensor. Every
new visit to the place would update the tensor values for that user if the contextual situation
matches a previous contextual situation. But in offline evaluation it is not possible to do so,
hence fuzzy matrix values can be considered directly.

Listing the problems of datasets

• Aggregated Ratings

• Aggregated checkins

• Privacy policies

Solutions

• Diverse dataset with more values.

• Diversity in temporal data.

• More venues with checkin data.

• Active users data.

Results

Best performing algorithms with Higher Precision and Recall values would be the best choice
of algorithm for POI recommender system with heterogeneous data.

In our work reported in this document, the evaluations would not be accurate when we
consider aggregated ratings to be personal ratings of the users. Inspite of this, we planned to
conduct evaluations ignoring the aggregated ratings and considering them as personal ratings
of the users.

Although we tried to gather Aggregated ratings from Foursquare using their API and pro-
cess the existing Foursquare dataset. Only 22,322 timestamps had the ratings values and the
rest were empty rating values. Because the dataset before filtering and ratings as mentioned
above had 1048 users, 2445 venues and 143246 timestamps, and after filerting had only 22,322
checkin values with both timestamps and ratings out of 143,246 total values.

Major problem was:

number of ratings equals number of timestamps i.e. 22,322 values.

Hence, the time dimension of the tensor became useless and tensor factorization failed to work
and provided wrong results. We compared the working of ExIm model on which did not per-
form well as the dataset had unique values for timestamps and ratings for each user, we used



models from [XCH+10, KABO10, PTC14, KCL15]. Because the results were not good, we
decided not to tabulate the results, and perform evaluations on another dataset which we would
create in the upcoming days. Hence we propose an evaluation procedure for a dataset which we
plan to generate in the upcoming days using Librec tool [GZSYS15]. We detail the procedure
of user study and offline evaluation and list the steps we plan to perform to generate the dataset.

4.3 Proposed Evaluation and Dataset Generation
Evaluating a proactive recommender needs real-time data and suitable feedback from the same
set of users who visit the places and receive recommendations. Hence it is important to have
the same set of users providing both the rating and checkin data. Dataset which we plan to
generate would be done in the following steps:

• Users would be asked to use a mobile application.

• Application would store the GPS tracks of the user after the user leaves home, until he
returns back.

• Users would be then asked to select the right place visited by them based on a list of
recommended places.

• Selected place by the user would be asked to rate about her experience.

We would then use the procedure used by [FCRS13] to extract the stay points and use
Foursquare API to find the nearest places. These places would be provided to the users to
choose the visited place and rate it once she returns to her home. By this approach we gather,
implicit data with the help of GPS tracks, timestamps, ratings, activities done by the user on
that day. This dataset can be split easily into training and testing data and tested for precision
and recall values.

This method facilitates to know the real annotations for the dataset collected by the mo-
bile application, as done by [BCP14] in annotating the data generated by the users. As users
annotate the data they generated, we also can store the ranks of places chosen by the user to
represent her visit at that place and actively learn her preference after the initialization of the
application as discussed in [ERR14]. Hence this facilitates to generate the dataset, as well as
perform evaluation.
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5
Conclusion

The availability of data and its effective use can lead to many useful applications. We discuss
one possibility, which is proactive recommender systems. We detailed several types of explicit
and implicit feedback concerned to travel domain, fuzzy logic for combining both the feedback,
matrix and tensor factorization approaches for recommendations.

We discuss the intuition behind using location and time as context for recommendations.
Proactive recommender systems are one of the upcoming class of systems which work on
the basis of contextual factors. At the right contextual situation, the right set of places are
recommended to the right user. This can be applied in mobile scenarios to deliver suitable
recommendations while the user is on the move. To support such system, the context has to be
analysed and modeled suitably. Building a new algorithm to model data for a new system or a
new domain is not productive, instead one can focus on modeling the data in suitable manner
for the existing state-of-the-art algorithms.

Several algorithms are used for providing context aware recommendations but they often
use homogeneous data [YSQ+15]. We discuss the advantages and also difficulties in using
heterogeneous data for context-aware recommendations. We propose a fuzzy logic model to
combine explicit and implicit input data (heterogeneous data) into a fuzzy output data which
is fed into a tensor. The tensor is decomposed from a sparse tensor to smaller rank matrices.
The dot product of these matrices can provide the estimated values of data. For a new user
entering the system, similarity measures such as Jaccard similarity can be used to compute the
right contextual situations (instead of rating values) and provide the recommendations suitable
at that context.

The tensor factorization model (ExIm) can be modified to take into account different types
of input for different domains of recommender systems. Hence this can support proactiveness
for recommendations.

5.1 Future Work
We plan to build an application to collect data and annotate the places visited with the help
of some users which will facilitate better evaluations. ExIm Tensor model can be improved
and modified for the large scale recommender systems for various domains which employ deep
learning algorithms for learning various anomalies in the data. These anomalous situations can
depict uncommon behavior which might be useful to detect uncommon contextual situations in
a large scale dataset.
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Fuzzy logic

Complete set of fuzzy rules for generation of combined
feedback values
• If (Explicit is Very Good) and (Implicit is Crowded) then (Tensor Data is 1)

• If (Explicit is Very Good) and (Implicit is Moderate) then (Tensor Data is 1)

• If (Explicit is Very Good) and (Implicit is Empty) then (Tensor Data is 1)

• If (Explicit is Good) and (Implicit is Crowded) then (Tensor Data is 1)

• If (Explicit is Good) and (Implicit is Moderate) then (Tensor Data is 1)

• If (Explicit is Good) and (Implicit is Empty) then (Tensor Data is 1)

• If (Explicit is Average) and (Implicit is Crowded) then (Tensor Data is 2)

• If (Explicit is Average) and (Implicit is Moderate) then (Tensor Data is 2)

• If (Explicit is Average) and (Implicit is Empty) then (Tensor Data is 2)

• If (Explicit is Bad) and (Implicit is Crowded) then (Tensor Data is 3)

• If (Explicit is Bad) and (Implicit is Moderate) then (Tensor Data is 3)

• If (Explicit is Bad) and (Implicit is Empty) then (Tensor Data is 3)

• If (Explicit is Worst) and (Implicit is Crowded) then (Tensor Data is 3)

• If (Explicit is Worst) and (Implicit is Moderate) then (Tensor Data is 3)

• If (Explicit is Worst) and (Implicit is Empty) then (Tensor Data is 3)
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