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Question Answering - Introduction

Question Answering
@ A research domain dealing with answering questions.
@ Natural Language questions on plain text, databases or knowledge bases.
@ Factoid and Non-Factoid questions.
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Question Answering - Types of Questions



Introduction
000000000000

Question Answering Pipeline - The General Approach

@ AQuestion Processing module analyses questions to detect the Expected Answer Type.

@ Passage retrieval module uses indexed set of documents to find relevant set of
documents and further retrieves a set of relevant paragraphs.

@ Answer Processing module extracts the answer for the question from the set of relevant
paragraphs.
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Question Answering Pipeline - Document Retrieval
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QA Pipeline - Paragraph/Sentence Selection
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QA Pipeline - Reading Comprehension

Question: Who is the President of France?

Paragraph 3:The officeholder is also honorary proto-canon of the Basilica of St. John

Lateran in Rome (although some have rejected the title in the past).
The current president of the French Republic is who succeeded Frangois

Hollande on 14 May 2017.
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Deep Learning based Question Answering Pipeline

@ Individual modules are based on deep learning based algorithms.
@ |Increase in interests to build end-to-end models for individual modules.
@ Some assumptions on the data can be seen while using deep learning.




Introduction
0000000000

@ Having enough data (Size)

@ Having the right kind of labelled data (Suitable type)

@ Building an end-to-end model which does everything (Complexity)
@ Generalizing the model to work on all QA tasks (Generalization)
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Size and Type of the data

Size
@ How large is large enough to use a deep learning algorithm?
@ Do we always need a large scale data in a specific domain?
@ Can similar datasets from other domains be useful? )

Type
@ Deep learning based approaches mainly focus on building end-to-end models.
@ How can we use semantic features effectively along with neural network models?
@ Are synthetic datasets and human annotated datasets comparable? )
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Complexity and Generalization

Complexity of the model

@ Are complex model always performing better than simple ones?
@ How to choose a good model to experiment on a new dataset?

@ How to choose the required hardware needed for experiments? (Number of
GPUs or TPUs required)

Generalization

@ Does one model performing better on a dataset perform similarly on others?
@ Does it generalize across different data domains?
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Timeline of different QA system approaches



Rule based systems (1960-1990)

Rule based expert systems

@ Hard coded rules by experts.
@ Term matching module triggers rules
and applies actions.

@ BASEBALL (1961), LUNAR (1973),
SYNTHEX, LIFER, and PLANES were
some of the systems built.

Rule based expert systems - Limitations

@ Hard to create rules.

@ Extensive amount of human work is
required.

@ Systems are not robust.
@ Not easy to adapt for expert domains.
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Pipeline based systems

Figure: A typical QA pipeline

Trec QA task

@ Trec Question Answering task [Voorhees et al., 2000] since 1999 gave rise to several
works which followed pipeline based systems.




Features based Machine Learning systems
(1990-2014)

Machine Learning modules

@ Modules rely heavily on input features.

@ Individual modules built using ML
models on different objectives.

@ Question Classification using rules -
(Moldovan et al., 1999; Hermjakob, 2001; Radev et
al., 2002; Ferret et al., 2001) and ML models -
(Hermjakob, 2001).

@ Document retrieval uses IR methods.

@ Answer processing using Dependency
Trees - (Hovy et al., 2002, Punyakanok et al., 2004;
Cui et al., 2005).

@ Tree edit distances, feature extraction

using dependency trees and relations,
were used.

Dividing hyperplane




Features based Machine Learning systems
(1990-2014)

@qs,f Machine Learning modules - Limitations
. .
/@z@. @ System performance depends mainly
o P @ on input features.

@ Several NLP tools are used for
extracting those features.

@ Domain expertise is required for feature
extraction.

@ NLP tools used for pre-processing may
contribute to error propagation.

Dividing hyperplane
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Neural Networks based systems (2014-2018)

Deep Learning modules

@ Goal is to avoid Feature Engineering.

@ Pioneered with Answer Sentence
Selection task using CNN - (L. Yu et al,,

> Y 0 ) 2014
A "F ‘t’i ) )
Y@AN@AN A @ Several models used RNNSs - (Moschitti et

' Y‘\' \ e al., 2014, He et al., 2015, Yin et al., 2016, Rao et al.,

o @2
@ SQUAD dataset - (Rajpurkar et al., 2016)
triggered lot of work for Reading

.Inpul .H‘.dden Dutpul Comprehension task.
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Neural Networks based systems (2014-2018)

Deep Learning modules - Limitations

@ Choosing right architecture, hyper
parameters, optimizer etc. is very

4 Y N H : important.
‘*‘F {\‘y \' S0 @ Feature Engineering — — Architecture
Ht‘g\ Engineering
AN

N “\
§
(90} e)
. Input . Hidden Output
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Large Scale Language Models (2018 - Present)

Sanjay Kamath February 6, 2020
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Large Scale Language Models (2018 - Present)

The language model family

sKnowledge graph

3

ERMIE
(Tsinghua)

Sanjay Kamath February 6, 2020 23/87
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Large Scale Language Models (2018 - Present)
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Large Scale Language Models (2018 - Present)

Large scale LMs for NLP

@ Large models trained on large scale
datasets.

@ ULMPFit (Howard et al., 2018) and ELMO
(Peters et al., 2017, Peters et al., 2018) used
LSTM as units.

@ BERT (Deviin et al., 2018) used Bidirectional
Transformers.

@ BERT and other variants are the current
state of the art in several QA tasks.
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Research Objectives

@ Building models which work both on small scale and large scale
datasets without affecting performance.

@ Leveraging the structured and semantic knowledge effectively into
the State of The Art (SOTA) question answering models to
improve performance.
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Biomedical Domain Data

Biomedical Question Answering task - BIOASQ

@ A Question and some paragraphs are provided as input and the system must return
Answers.
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Datasets

| Datasets | Train | Dev | Test |
BIOASQ 4b 427 59 161
Small Scale BIOASQ 5b 544 75 150
BIOASQ 6b 685 94 161

SQUAD v1.0 | 87,599 | 10,570 | 9,533
QUASAR-T | 37,012 | 3,000 | 3,000

Large Scale

Figure: Large scale and Small scale datasets comparison
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Deep Learning and Question Answering

Questions commonly asked
@ Do deep learning models always require large scale data?
@ With less data, can we not use deep learning methods?
@ Can any type of data be used for deep learning?

Our research context

@ Using deep learning models on small scale domain specific datasets.

@ Using the models built for open domain data towards domain specific data.
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QA Task - Reading Comprehension

Assumption: Correct Paragraph containing the answer is provided.
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BIOASQ Data

Figure: Some snippets contain answers and some do not.

Reading Comprehension Format

@ Each paragraph containing an answer is considered as a separate QA pair.
@ Other non answer containing paragraphs are discarded.
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Datasets

| Dataset | Gold Questions RC eligible |

‘Bioasq 4 486 | 321 (66%)
Bioasq 5 619 428 (69.1%)
Bioasq 6 779 543 (69.7%)
SQUAD v1.0 1,07,702 1,07,702 (100%)

Figure: Datasets used in our experiments which are suitable for Reading
Comprehension (RC) setting, as done by [Weissenborn et al., 2018, Lee et al., 2019]
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Choosing a Simple Model

HOW DO WE CHOOSE A SIMPLE MODEL?

@ Are all models using LSTMs (comparably similar architecture) the same?
@ Can we choose the model which fetches the best scores on a task dataset?

@ GPU training time == €€€€!l!
Is there a tradeoff between training time and accuracy to be considered?

@ How does model complexity (more parameters == more complex) affect the
training time?




Building Domain-Specific Models
00000000 ®000000000000000000000

Choosing a Simple Model

Figure: DRQA by [Chen et al., 2017] and BIDAF by [Seo et al., 2016]



Building Domain-Specific Models
000000000e00000000000000000000

Choosing a Simple Model

DRQA

@ Training time: ~4 hours on a single
GPU

@ Exact Match score on SQUAD dataset:
69.5%

@ Simple model compared to BIDAF
@ Published in March 2017

BIDAF

@ Training time: ~20 hours a single GPU

@ Exact Match score on SQUAD dataset:
67.7%

@ Complex model compared to DRQA
@ Published in Nov. 2016
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DRQA

DRQA

Question:

@ Question (Q) and Paragraphs (P) both are encoded
with GLOVE vectors.

@ An attention mechanism is used to map embeddings
between Q and P.

Falign(p;) = Zja; jE(q;) (1)
Where aqj is,
exp (a(E(s;)) - a(E(q;))

W S cap(a(B() By

@ BIi-LSTMS are used individually and are connected to
two separate bilinear classifiers for Start and End
predictions.

Pstart (1) o< exp (P Wsq) 3)

Peng (1) o< exp (Pi Wea) (4)

@ Model and implementation by [Chen et al., 2017]
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Domain Adaptation using DRQA

A
. f
SQUAD \
R . . Ps
questions 1 Open
domain

) : S
Word Embeddings 6 = LA . model
4

Predictions

Figure: From open domain towards biomedical domain [Weissenborn et al., 2017]
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Domain Adaptation using DRQA
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Biomedical
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domain
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Figure: From open domain towards biomedical domain [Weissenborn et al., 2017]
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Pre-training and Finetuning
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Pre-training and Finetuning
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Evaluation in BIOASQ

@ Automatic evaluation performed on system results using the
official evaluation scripts’.
@ Following evaluation measures are computed:
— Strict accuracy - rate of exact matching strings of gold standard
answers on top 1 prediction.

— Lenient accuracy - rate of exact matching strings of gold standard
answers in top 5 predictions.

— MRR - mean reciprocal rank computed on the top 5 predictions.

'https://github.com/BioASQ/Evaluation-Measures
Sanjay Kamath ] February 6, 2020  42/87
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Figure: A study to show the importance of domain adaptation - [Kamath et al., 2019]
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Reading Comprehension vs Open QA
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BIOASQ Data (Recap)

Figure: Some snippets contain answers and some do not.

Reading Comprehension Format
@ All paragraphs are considered in the OpenQA model setting. J
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OPEN-QA model - PSPR

Paragraph Selector

___________ I

Paragraphs:

o !

Paragraph Reader

Irrelevant

Legend:
Relevant

Figure: OpenQA model by [Lin et al., 2018]
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OPEN-QA with DRQA

i Question:

J — ! Question:

Paragraph Selector

Embedding Match
(Pr

Quesiiunl

Irrelevant
Relevant

Legend:

) S|arll lEnd -
Figure: OpenQA model by [Lin et al., 2018]
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BERT - New SOTA on several QA tasks

Sanjay Kamath February 6, 2020
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BERT - New SOTA on several QA tasks

Figure: BERT model by [Devlin et al., 2019]
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BIOBERT

Figure: BIOBERT model by [Lee et al., 2019]

BIOBERT in BIOASQ

@ Applied BIOBERT on BIOASQ task data but on document level text snippets.
@ Pre-trained with SQUAD data and fine-tuned with BIOASQ data.
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Figure: Modification of the paragraph text results in the variation of performance
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Which dataset is better to Pre-train?

Some concerns
@ How large is large enough for a dataset?
@ Are synthetic datasets better than human annotated ones?
@ What is the minimum size of a dataset required for optimal performance?
@ How do we choose the best dataset for pre-training?

Some consequences

@ BERT being the state of the art model (during the time of performing these
experiments) is used in recent works.

@ Large scale makes it harder to train the model from scratch with low resource
compute, training and inference both take much longer times than previous
neural models.
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Pre-Training Datasets

| Datasets | Train | Dev | Test |

SQUAD v1.0 | 87,599 | 10,570 | 9,533
SQUAD v2.0 | 130,319 | 11,873 | 8,862
Hotpot QA | 90,564 | 7,405 | 7,405
News QA | 107,673 | 5,988 | 5,971

Table: Large scale datasets used in the experiments for pre-training, with their
splits.
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Figure: Experiments on different Pre-training datasets for Biomedical QA task.
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Conclusion

@ Small scale datasets are suitable with deep learning models while
using domain adaptation.

@ Domain adaptation helps in improving QA performance.
@ Open QA model performs better for modeling BIOASQ datasets.

@ Different pre-training datasets have different impact on
downstream domain adaptation performance.
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Semantic Information

@ End-to-end Neural models rely only on input and output to learn.

@ Traditional QA pipeline methods rely on features from different sources such as
named entities, part of speech tags, question types etc.

@ "How can one build models which use best of the both worlds?"
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Semantic and Structured Information

@ Information about question types and expected answer types.

@ Synonyms and variants of answers in the contexts.

@ Information about entities from ontologies and knowledge bases.
@ Syntactic features of words and sentences.
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Approach 1 - Answer Variants

Q: Mutation of which gene is implicated in the Brain-lung-thyroid syndrome?

. Novel NKX2-1 Frameshift Mutations in Patients with Atypical Phenotypes of the
Brain-Lung-Thyroid Syndrome.

. NKX2-1 mutations in brain-lung-thyroid syndrome: a case series of four patients.

. Brain-lung-thyroid syndrome (BLTS) characterized by congenital hypothyroidism,
respiratory distress syndrome, and benign hereditary chorea is caused by
thyroid transcription factor 1 (NKX2-1/TTF1) mutations.

. The disorder is caused by mutations to the NKX2.1 (TITF1) gene and also forms
part of the \"brain-lung-thyroid syndrome\', in which additional developmental
abnormalities of lung and thyroid tissue are observed.

A: thyroid transcription factor 1

Gold standard data annotated by experts - Misses many variants.
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Using Answer Variants

Q: Mutation of which gene is implicated in the Brain-lung-thyroid syndrome?

. Novel NKX2-1 Frameshift Mutations in Patients with Atypical Phenotypes of the
Brain-Lung-Thyroid Syndrome.

. NKX2-1 mutations in brain-lung-thyroid syndrome: a case series of four patients.

. Brain-lung-thyroid syndrome (BLTS) characterized by congenital hypothyroidism,
respiratory distress syndrome, and benign hereditary chorea is caused by
thyroid transcription factor 1 (NKX2-1/TTF1) mutations.

. The disorder is caused by mutations to the NKX2.1 (TITF1) gene and also forms
part of the \"brain-lung-thyroid syndrome\', in which additional developmental
abnormalities of lung and thyroid tissue are observed.

A: thyroid transcription factor 1, NKX2-1, TTF1, TITF1

Several answer variants which are syntactically different but
semantically represents the same entity are annotated by us.
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Annotating Answer Variants

Manual Annotations

@ Annotated using the Brat tool and UMLS meta thesaurus references. 618 questions were
annotated manually.

@ 3 people from CS background annotated for answer variants.

@ Released this annotated dataset publicly
https://zenodo.org/record/1346193#.W3_WUZMzZQI



https://zenodo.org/record/1346193#.W3_WUZMzZQI
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Annotating Answer Variants

Gold standard answer : MDR - TB

Paragraph 1: Delamanid: a review of its use in patients with multidrug-resistant
tuberculosis.

Paragraph 2: In conclusion, delamanid is a useful addition to the treatment options
currently available for patients with MDR-TE.

Paragraph 3:
EXPERT OPINION; Delamanid showed potent activity against drug-susceptible and
-resistant Mycobacterium tuberculosis in both in vitro and in vivo studies.

Automatic Annotations

@ Annotated using the UMLS CUI identifiers from entities detected.

@ CUI from gold standard answer and matching CUls from paragraphs are mapped to find
variants.
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Annotating Answer Variants

Automatic Annotations

@ Annotated using the UMLS CUI identifiers from entities detected.

@ CUI from gold standard answer and matching CUls from paragraphs are mapped to find
variants.
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Annotating Answer Variants

Gold standard answer : MDR - TB

Paragraph 1: Dela
tuberculosis.

CUI : C0206526 |its use in patients with multidrug-resistant

CUI - C0206526 onclusion, delamanid is a useful addition to the treatment options
for patients with MDR-TB.

Paragraph 3: CUI : C0206526
EXPERT OPINION: Delaman ctivity against drug-susceptible and
-resistant Mycobacterium tuberculosis in both in vitro and in vivo studies.

CUI : C0206526

Automatic Annotations

@ Annotated using the UMLS CUI identifiers from entities detected.

@ CUI from gold standard answer and matching CUls from paragraphs are mapped to find
variants.
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Answer Variants and Performance Increase

Biomedical

v 4
Open

domain

N
Open
model domain

model

. o Y T T T TF P
|
Embeddings
Biomedical

Quesions | | proa

Experiments

@ Reading comprehension experiments with BIOASQ Gold Standard data and
Annotated data.

@ Comparison with Automatic and Manually annotated answers.
@ SQUAD dataset for Open domain, BIOASQ dataset for biomedical domain.
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Answer Variants and Performance Increase

Figure: 5-fold evaluation on 5B and 6B datasets of BIOASQ - [Kamath et al., 2018]

Figure: Automatic vs Manually annotated answer datasets - (Our unpublished results)
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Approach 2 - Expected Answer Types (EAT)
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Improving Answer Sentence Selection - Using EAT (Expected Answer Type)
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Improving Answer Sentence Selection - Using EAT (Expected Answer Type)

| Dataset | Split | #PlainQ | #EAT Q | #Entities |
Train | 1229 | 649 (52.8%) | 13.96
Dev 82 | 76(92.68%) | 5.02
Test 100 82 (82%) 7.82

Table: Dataset annotated by [Madabushi et al., 2018] (EAT - Expected
Answer Type)

Trec QA
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Similarity
score

Question Sentence

| Embedding match (Pre-Attention) ]

1

’ Embedding layer J

Figure: RNN-S model for Sentence Selection Task
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Improving Answer Sentence Selection - Using EAT (Expected Answer Type)

Figure: Results using RNN-S model. EAT (Expected Answer Type) - [Kamath et al.,
2019]



Approach 3 - Improving Top-1 Accuracy Using
Semantic Features
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Improving Top-1 Accuracy Using Semantic Features

Method
@ Neural network model outputs can be used to further improve QA performance using
semantic and structured information.
@ Top-K answers are re-ranked to obtain better Top-1 accuracy.

@ Models such as Multi Layer Perceptron, Adaboost, Random forests were experimented
using several features from OpenQA model [Lin et al., 2018], semantic and syntactic
features and Expected Answer Type features.

4
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Improving Top-1 Accuracy Using Semantic Features

Open domain QA Features
@ Answer probability, Paragraph probability, Paragraph and answer length, Answer words
overlap with paragraph words.

@ Maximum value of answer probability, Maximum value of paragraph probability, Answer
presence ratio, Summation of answer probability, Answer rank.

@ Expected Answer Type (EAT) match, Cosine distance between Lexical Answer type word
and answer words.

Biomedical QA additional Features
@ Matching of Lexical Answer Type (LAT) word with UMLS Semantic Type match

@ Matching of Lexical Answer Type (LAT) word with UMLS Semantic Group match
@ Matching of Lexical Answer Type (LAT) word with UMLS CUI match
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Improving Top-1 Accuracy Using Semantic Features

Figure: Results on the QUASAR-T dataset (Open Domain)
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Improving Top-1 Accuracy Using Semantic Features

Figure: Results on the BIOASQ dataset (Biomedical Domain)
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Conclusion

@ Annotated answer variants show improvement in performance for
Reading Comprehension.

@ Explicitly highlighting Expected Answer Types (EAT) in the data
helps in improving certain QA tasks.

@ Top-1 accuracy can be improved using Semantic information.
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Sanjay Kamath February 6, 2020
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Whole QA pipeline using different QA models

QA Pipeline using SOTA models

@ Can the current State of the Art models replace the pipeline with an end-to-end
model?

@ How does the performance compare with neural models which use pipeline
architecture?
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Whole QA pipeline using SOTA models

QA Pipeline using SOTA models

@ BERT end-to-end model for whole QA pipeline performs worse compared to
LSTM model DRQA which is end-to-end.

@ BM25 for document retrieval and BERT for QA performs better than BERT alone.
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Whole QA Pipeline on TrecQA data

QA Pipeline on TrecQA data

@ Using the OpenQA model by [Lin et al., 2018] on TrecQA task dataset for Answer
Extraction.

@ Non-neural models performed better.
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Large Scale Language Models - Concerns

Some concerns

@ Expensive compute required. BERT took 4 days on 16 cloud TPUv3 (64 chips) which costs
around $14,000.

@ CO2 emissions are a side effect which are often neglected into consideration. [Strubell et
al., 2019]
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Large Scale Language Models - Concerns

Conversation B

Human:  Hi'
Meena: Hi' How are you this fine evening ?

GOOGLE SAYS ITS CHATBOTISCAPABLE  'Netun G Wiyl fo !
OF NEAR-HUMAN CONVERSATION el b

Meena:  Sounds fin! What movie®
Human: [ haven’t decided yet, perhaps an Oscar-
nowtinated one. any SugRetion”

Meena:  ['mi nol foo familiar with recen! Oucar wiiers,
but I do know | wanted so see The Grand Bu-
dapest Hotel,

Human:  ah, tell me ahout that movie!

Meena:  It's from the same director and writer as Moon-
rise Kingdom, Wes Anderson is preny well
known for making funny, eolocful films, ['ve
heard it"s preiry good.

Human: ha' {‘ve searched on the intermet and beth
mavies ane very colorful!

Meena:  I'm looking forward toit. | love colorful movies.

Some concerns

@ A new chatbot model by Google Al [Adiwardana et al., 2020] costs $1,400,000 to train for
30 days on the TPU cloud.

@ Google uses renewable energy sources for cloud, what about others?
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Conclusion

@ Domain Adaptation

— From Open domain towards Biomedical domain QA using several
techniques.

@ Semantic information

— Explicit use of semantic and structured information can help.
@ Choose simple models most of the times.

— Simple models are better for several reasons.
@ Contributions

— Several SOTA QA models built, modified and experimented.
— Annotated datasets and codes released publicly.
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Future Perspectives

@ Large Scale Language Models - a new milestone in NLP.
— Building smaller models which perform similarly.
@ Low resource domain data adaptation.
— Expert domains might not always have large scale text for
pre-training.
@ Fusion of structured and semantic information from ontologies
and knowledge bases into language models.
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